Home > Strange Events > Giant Sinkholes: Will Your House Be Swallowed Next?

Giant Sinkholes: Will Your House Be Swallowed Next?

March 9, 2013

nanopatentsandinnovations.blogspot.com

A devastating sinkhole occurred in Florida on February 28, 2013, raising questions and concerns about this incredible phenomenon. Around 20% of the U.S. lies in areas susceptible to sinkhole events, highlighting the need for research and to be informed about this hazard.

https://www.youtube.com/watch?feature=player_embedded&v=wubMuKDGBuk

What is a Sinkhole?

Geologically, a sinkhole is a depression in the ground that has no natural external surface drainage. Basically this means that when it rains, all of the water stays inside the sinkhole and typically drains into the subsurface.

Sinkholes are most common in what geologists call, “karst terrain.” What’s that? These are regions where the type of rock below the land surface can naturally be dissolved by groundwater circulating through them. Soluble rocks include salt beds and domes, gypsum, and limestone and other carbonate rock. Florida, for instance, is an area largely underlain by limestone and is highly susceptible to sinkholes.

When water from rainfall moves down through the soil, these types of rock begin to dissolve and spaces and caverns develop underground. Sinkholes are dramatic because the land usually stays intact for a period of time until the underground spaces just get too big. If there is not enough support for the land above the spaces, then a sudden collapse of the land surface can occur.

USGS map showing areas of the contiguous United States that are underlain by relatively soluble rocks with potential for cave and natural sinkhole formation. Note that the delineated areas are generalized; actual potential for sinkhole development varies locally within each region.

Credit: USGS

Keep in mind though that while collapses are more frequent after intense rainstorms, there is some evidence that droughts play a role as well. Areas where water levels have lowered suddenly are more prone to collapse formation.

Areas Most Susceptible

About 20% of our country is underlain by “karst terrain” and is susceptible to a sinkhole event. The most damage from sinkholes tends to occur in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania.

Different Types and Various Severities

Sinkholes can be characterized into two types. First, there are cover-collapse sinkholes, which can develop abruptly (over a period of hours) and cause catastrophic damages. Secondly, there are cover-subsidence sinkholes, which form slowly over time with the ground gradually subsiding or deflating. These types of events can be less noticeable and go undetected for long periods.
Collapse sinkhole in a salt dome in Daisetta, Texas (September 2008).

Photo Credit: Randall Orndorff, USGS

Sinkhole collapses can range in size and severity. Sinkholes can vary from a few feet to hundreds of acres and from less than one to more than 100 feet deep. Sinkholes can have dramatic effects, especially in urban settings. They can contaminate water resources and have been seen to swallow up swimming pools, parts of roadways, and even buildings.

Is There a Sinkhole on Your Property?

This is a difficult question, and unfortunately there isn’t a very efficient system to determine this quite yet. It is recommended that people constantly observe their property for things such as small holes in the ground or cracks formed in a structure’s foundation. People can also check to see if they live in areas underlain by soluble rock, and they can do so by checking with county offices, local or state geological surveys, or the USGS.

Even Humans Cause Sinkholes

While sinkhole collapses are frequent in karst areas, there are a variety of other circumstances that can lead to such events. Many sinkholes form from human activity. Collapses can occur above old mines, from leaky faucets, when sewers give way, or due to groundwater pumping and construction.

Think about all the changes that occur when water-drainage patterns are altered and new systems are developed. And when industrial and runoff-storage ponds are created, the resulting substantial weight of the new material can trigger an underground collapse of supporting material.

Aquifer systems are another factor in sinkholes. The sediment above the aquifer system may be delicately balanced by ground-water fluid pressure, meaning that the water below ground is actually helping to keep the surface soil in place. Groundwater pumping for urban water supply and for irrigation can produce new sinkholes. If pumping results in a lowering of groundwater levels, then underground structures could fail and thus sinkholes can occur.

Cover-collapse sinkhole in limestone near Frederick, Maryland (September 2003).

Photo Credit: Randall Orndorff, USGS

Start with USGS Science

Starting with science is important to understanding where sinkholes are likely to occur and making the best decisions to protect life and property. Scientists at the U.S. Geological Survey (USGS) play a key role by developing geologic maps of the nation.

By mapping the nation, the USGS contributes important geologic and topographic information needed to understand karst regions and local areas. Detailed geologic mapping helps to define areas of soluble rock at the surface and in the subsurface, thus educating the land planners, policy makers, and the public about sinkhole risk.

These USGS maps and data are essential to many other purposes, including assessing ground-water quality and contamination risks; predicting earthquake, volcano, and landslide hazards; characterizing energy and mineral resources and their extraction costs; waste repository siting; land management and land-use planning; and general education.

Sinkholes are common where the rock below the land surface is limestone, carbonate rock, salt beds, or rocks that can naturally be dissolved by groundwater circulating through them. As the rock dissolves, spaces and caverns develop underground. Sinkholes are dramatic because the land usually stays intact for a while until the underground spaces just get too big. If there is not enough support for the land above the spaces then a sudden collapse of the land surface can occur. These collapses can be small, or, as this picture shows, or they can be huge and can occur where a house or road is on top.

The most damage from sinkholes tends to occur in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. The picture to the left shows a sinkhole that quickly opened up in Florida, apparently eating a swimming pool, some roadway, and buildings.
What is a “Sinkhole”?

A

 sinkhole is an area of ground that has no natural external surface drainage–when it rains, all of the water stays inside the sinkhole and typically drains into the subsurface. Sinkholes can vary from a few feet to hundreds of acres and from less than 1 to more than 100 feet deep. Some are shaped like shallow bowls or saucers whereas others have vertical walls; some hold water and form natural ponds. Typically, sinkholes form so slowly that little change is noticeable, but they can form suddenly when a collapse occurs. Such a collapse can have a dramatic effect if it occurs in an urban setting.
Areas prone to collapse sinkholes

The map below shows areas of the United States where certain rock types that are susceptible to dissolution in water occur. In these areas the formation of underground cavities can form and catastrophic sinkholes can happen. These rock types are evaporites (salt, gypsum, and anhydrite) and carbonates (limestone and dolomite). Evaporite rocks underlie about 35 to 40 percent of the United States, though in many areas they are buried at great depths.


Types of sinkholes

Since Florida is prone to sinkholes, it is a good place to use to discuss some different types of sinkholes and the geologic and hydrologic processes that form them. The processes of dissolution, where surface rock that are soluble to weak acids, are dissolved, and suffosion, where cavities form below the land surface, are responsible for virtually all sinkholes in Florida.
Dissolution sinkholes

Dissolution of the limestone or dolomite is most intensive where the water first contacts the rock surface. Aggressive dissolution also occurs where flow is focussed in preexisting openings in the rock, such as along joints, fractures, and bedding planes, and in the zone of water-table fluctuation where groundwater is in contact with the atmosphere.
Cover-subsidence sinkholes

Cover-subsidence sinkholes tend to develop gradually where the covering sediments are permeable and contain sand. In areas where cover material is thicker or sediments contain more clay, cover-subsidence sinkholes are relatively uncommon, are smaller, and may go undetected for long periods.

Cover-collapse sinkholes

Cover-collapse sinkholes may develop abruptly (over a period of hours) and cause catastrophic damages. They occur where the covering sediments contain a significant amount of clay. Over time, surface drainage, erosion, and deposition of sinkhole into a shallower bowl-shaped depression.

Sinkholes can be human-induced
New sinkholes have been correlated to land-use practices, especially from groundwater pumping and from construction and development practices. Sinkholes can also form when natural water-drainage patterns are changed and new water-diversion systems are developed. Some sinkholes form when the land surface is changed, such as when industrial and runoff-storage ponds are created. The substantial weight of the new material can trigger an underground collapse of supporting material, thus causing a sinkhole.

The overburden sediments that cover buried cavities in the aquifer systems are delicately balanced by ground-water fluid pressure. The water below ground is actually helping to keep the surface soil in place. Groundwater pumping for urban water supply and for irrigation can produce new sinkholes In sinkhole-prone areas. If pumping results in a lowering of groundwater levels, then underground structural failure, and thus, sinkholes, can occur.

To see a catalog of all geologic maps for the country, visit the USGS National Cooperative Geologic Mapping Program website. On that site, you can browse through the National Geologic Map database, which includes maps published by the USGS and state geological surveys.
Advertisements
Categories: Strange Events Tags: ,
  1. David Andrews
    May 11, 2013 at 9:24 am

    I seem to not be getting any more information from you. Whatzup?

    David

  1. No trackbacks yet.
Comments are closed.
%d bloggers like this: